Supporting Information

AN IONIC LIQUID-BASED GREEN SYNTHESIS STRATEGY: SYNTHESIS OF DIHYDROPYRIMIDINONES BY THREE-COMPONENT BIGINELLI-TYPE REACTION OF ALIPHATIC ALDEHYDES, AROMATIC ALDEHYDES AND UREA

Lei-Han Fu, a,b Zong-Bo Xie, a,b* Guo-Qing Chen, b Jin Lan, b Zhi-Yu Hu, b and Zhang-Gao Le a,b*

Address: a State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, Nanchang 330013, P. R. China. b Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, P. R. China. E-mail: zbxie@ecut.edu.cn; zhgle@ecut.edu.cn

1. The recycle of IL ..1
2. Characterization of compounds..2
 2.1 1H-NMR and 13C-NMR data of target products..2
 2.2 1H-NMR and 13C-NMR spectra for target products..7
1. The recycle of IL

In order to implement the concept of green chemistry and reduce energy consumption, the recycling of ionic liquids was also examined. The results are shown in Table S1. As the number of cycles increased from 1 to 4, the yield decreased only slightly, which shows that the ionic liquid still has a catalytic effect on the reaction after the cycle.

Table S1. The recycle of IL

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cycle numbers</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>79</td>
</tr>
</tbody>
</table>

*Reaction conditions: 4-nitrobenzaldehyde (1 mmol), n-hexanal (1.5 mmol), methylurea (1.5 mmol), 90°C, 6 h, 1 mL 30% IL aqueous solution. *Yields of pure products isolated by chromatography.
2. Characterization of compounds

2.1 1H-NMR, 13C-NMR data of DHPMs products

1-methyl-4-(4-nitrophenyl)-5-propyl-3,4-dihydropyrimidin-2(1H)-one

Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 8.20 (d, $J = 8.5$ Hz, 2H), 7.46 (d, $J = 8.5$ Hz, 2H), 5.82 (s, 1H), 5.46 (s, 1H), 5.03 (s, 1H), 3.08 (s, 3H), 1.86 – 1.54 (m, 2H), 1.34 – 1.11 (m, 2H), 0.85 (t, $J = 7.3$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.48, 149.99, 147.72, 129.37, 127.99, 125.21, 124.23, 59.06, 39.21, 31.63, 22.63, 14.15.

1-methyl-4-(3-nitrophenyl)-5-propyl-3,4-dihydropyrimidin-2(1H)-one

Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 8.09 (dt, $J = 3.5$, 1.5 Hz, 2H), 7.59 (d, $J = 7.8$ Hz, 1H), 7.48 (t, $J = 7.9$ Hz, 1H), 5.79 (s, 1H), 5.42 (s, 1H), 4.99 (s, 1H), 3.03 (s, 3H), 1.65 (t, $J = 7.8$ Hz, 2H), 1.41 – 1.27 (m, 2H), 0.79 (t, $J = 3.5$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.50, 150.01, 147.74, 129.39, 128.01, 124.25, 123.70, 113.02, 59.08, 34.48, 31.65, 22.65, 14.17.

1-methyl-4-(2-nitrophenyl)-5-propyl-3,4-dihydropyrimidin-2(1H)-one

Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 7.86 (d, $J = 7.1$ Hz, 1H), 7.59 (t, $J = 7.6$ Hz, 1H), 7.52 (d, $J = 7.8$ Hz, 1H), 7.40 (t, $J = 7.7$ Hz, 1H), 6.01 (s, 1H), 5.57 (s, 1H), 5.27 (s, 1H), 3.03 (s, 3H), 1.71 – 1.65 (m, 2H), 1.26 – 1.16 (m, 2H), 0.79 (t, $J = 7.3$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.48, 149.99, 147.72, 129.37, 127.99, 125.21, 124.23, 113.00, 59.06, 34.46, 31.63, 22.63, 14.15.
4-(1-methyl-2-oxo-5-propyl-1, 2, 3, 4-tetrahydropyrimidin-4-yl)benzonitrile

Yellow solid. 1H NMR (500 MHz, CDCl$_3$) δ 7.53 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 17.5 Hz, 2H), 6.37 (s, 1H), 5.72 (s, 1H), 4.86 (s, 1H), 2.90 (s, 3H), 1.60 (t, J = 14.3 Hz, 2H), 1.25 (ddd, J = 20.6, 13.2, 6.7 Hz, 2H), 0.76 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.51, 147.75, 129.40, 128.02, 125.24, 124.26, 116.45, 113.03, 59.09, 34.49, 31.66, 22.66, 14.18.

5-isopropyl-1-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one

Yellow solid. 1H NMR (500 MHz, CDCl$_3$) δ 8.11 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 6.40 (s, 1H), 5.81 (s, 1H), 5.00 (s, 1H), 3.01 (s, 3H), 1.89 (dt, J = 13.5, 6.7 Hz, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) 153.49, 150.00, 147.73, 129.38, 128.00, 125.22, 124.24, 59.07, 34.47, 31.64, 22.64.

5-butyl-1-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one

Yellow solid. 1H NMR (500 MHz, CDCl$_3$) δ 8.13 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 5.79 (s, 1H), 5.75 (s, 1H), 4.97 (s, 1H), 2.99 (s, 3H), 1.67 (t, J = 11.9 Hz, 2H), 1.23 – 1.11 (m, 4H), 0.78 (t, J = 6.2 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.48, 149.99, 147.72, 127.99, 125.21, 124.23, 123.68, 59.06, 34.46, 31.63, 30.34, 22.63, 14.15.

1-methyl-4-(4-nitrophenyl)-5-pentyl-3,4-dihydropyrimidin-2(1H)-one
Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 8.09 (d, J = 8.6 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 6.01 (s, 1H), 5.75 (s, 1H), 4.97 (s, 1H), 2.98 (s, 3H), 1.64 (t, J = 7.5 Hz, 2H), 1.09 (d, J = 10.0 Hz, 6H), 0.76 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.48, 149.99, 147.72, 127.99, 125.21, 124.23, 113.00, 59.06, 34.46, 31.63, 30.34, 26.99, 22.63, 14.15.

5-hexyl-1-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one

Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 8.18 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 5.88 (s, 1H), 5.80 (s, 1H), 5.02 (s, 1H), 3.05 (s, 3H), 1.70 (t, J = 7.2 Hz, 2H), 1.18 (d, J = 7.3 Hz, 8H), 0.83 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.40, 149.91, 147.64, 127.91, 125.13, 124.15, 112.92, 58.98, 34.38, 31.56, 30.27, 28.78, 26.91, 22.55, 14.07.

4-(4-methoxyphenyl)-1-methyl-5-propyl-3,4-dihydropyrimidin-2(1H)-one

Yellow oily liquid, 1H NMR (500 MHz, CDCl$_3$) δ 7.12 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 5.68 (s, 1H), 5.11 (s, 1H), 4.80 (s, 1H), 3.72 (s, 3H), 2.99 (s, 3H), 1.69 – 1.56 (m, 2H), 1.31 (dd, J = 14.6, 7.2 Hz, 2H), 1.14 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.46, 149.97, 129.35, 127.97, 125.19, 124.21, 112.98, 59.04, 54.17, 34.44, 31.61, 22.61, 14.13.

4-(4-(dimethylamino)phenyl)-1-methyl-5-propyl-3,4-dihydropyrimidin-2(1H)-one

Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 7.05 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 8.7 Hz, 2H), 5.66 (s, 1H), 5.09 (s, 1H), 4.75 (s, 1H), 2.99 (s, 3H), 2.86 (s, 6H), 1.70 – 1.54 (m, 2H), 1.26 – 1.12 (m, 2H), 0.77 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.48, 152.38,
129.37, 127.99, 125.21, 124.23, 113.00, 59.06, 39.02, 34.46, 31.63, 22.63, 14.15.

4-(4-bromophenyl)-1-methyl-5-propyl-3,4-dihydropyrimidin-2(1H)-one

White solid, 1H NMR (500 MHz, CDCl$_3$) δ 7.44 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 5.75 (s, 1H), 5.34 (s, 1H), 4.87 (s, 1H), 3.04 (s, 3H), 1.78 – 1.59 (m, 2H), 1.45 – 1.25 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.50, 147.74, 129.39, 128.01, 125.23, 124.25, 123.70, 59.08, 34.48, 31.65, 22.65, 14.17.

4-(4-chlorophenyl)-1-methyl-5-propyl-3,4-dihydropyrimidin-2(1H)-one

White solid, 1H NMR (500 MHz, CDCl$_3$) δ 7.30 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 5.76 (s, 1H), 5.23 (s, 1H), 4.89 (s, 1H), 3.06 (s, 3H), 1.69 (dd, J = 16.9, 8.7 Hz, 2H), 1.38 (dt, J = 14.8, 7.4 Hz, 2H), 0.83 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 153.48, 147.72, 129.37, 127.99, 125.21, 124.23, 123.68, 59.06, 34.46, 31.63, 22.65, 14.15.

4-(4-bromophenyl)-1-ethyl-5-propyl-3,4-dihydropyrimidin-2(1H)-one

White solid, 1H NMR (500 MHz, CDCl$_3$) δ 7.47 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 5.80 (s, 1H), 5.29 (s, 1H), 4.87 (s, 1H), 3.61 – 3.30 (m, 2H), 1.79 – 1.61 (m, 2H), 1.50 – 1.27 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 152.74, 142.10, 131.90, 128.70, 123.16, 121.95, 113.61, 59.01, 41.62, 32.48, 20.23, 14.24, 13.67.

1-ethyl-5-propyl-4-(p-tolyl)-3,4-dihydropyrimidin-2(1H)-one

5
Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 7.18 (d, $J = 13.8$ Hz, 4H), 5.79 (s, 1H), 4.87 (s, 1H), 3.94 (s, 1H), 3.62 – 3.40 (m, 2H), 2.35 (s, 3H), 1.85 – 1.63 (m, 2H), 1.48 – 1.30 (m, 2H), 1.22 (t, $J = 7.1$ Hz, 3H), 0.86 (t, $J = 6.2$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 152.82, 140.13, 137.83, 129.32, 126.86, 122.59, 114.38, 59.35, 41.57, 32.55, 21.06, 20.23, 14.26, 13.69.

1-ethyl-4-(4-nitrophenyl)-5-propyl-3,4-dihydropyrimidin-2(1H)-one

Yellow solid, 1H NMR (500 MHz, CDCl$_3$) δ 8.13 (d, $J = 8.6$ Hz, 2H), 7.38 (d, $J = 8.6$ Hz, 2H), 5.78 (s, 1H), 5.59 (s, 1H), 4.94 (s, 1H), 3.47 – 3.37 (m, 2H), 1.72 – 1.57 (m, 2H), 1.38 – 1.31 (m, 2H), 1.12 (t, $J = 7.1$ Hz, 3H), 0.79 (t, $J = 7.3$ Hz, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 152.71, 150.04, 147.64, 127.86, 124.16, 123.80, 112.89, 58.87, 41.73, 32.45, 20.25, 14.23, 13.63.
1H-NMR, 13C-NMR spectra for DHPMs products

1H NMR spectra of compound 4a

13C NMR spectra of compound 4a
1H NMR spectra of compound 4b

13C NMR spectra of compound 4b
1H NMR spectra of compound 4c

13C NMR spectra of compound 4c
1H NMR spectra of compound 4d

13C NMR spectra of compound 4d
1H NMR spectra of compound 4e

13C NMR spectra of compound 4e
1H NMR spectra of compound 4f

13C NMR spectra of compound 4f
1H NMR spectra of compound 4g

13C NMR spectra of compound 4g
1H NMR spectra of compound $4h$

13C NMR spectra of compound $4h$
1H NMR spectra of compound 4i

13C NMR spectra of compound 4i
1H NMR spectra of compound 4j

13C NMR spectra of compound 4j
1H NMR spectra of compound 4k

13C NMR spectra of compound 4k
1H NMR spectra of compound 4l

13C NMR spectra of compound 4l
1H NMR spectra of compound 4m

13C NMR spectra of compound 4m
1H NMR spectra of compound 4n

13C NMR spectra of compound 4n
1H NMR spectra of compound 4o

13C NMR spectra of compound 4o