FIRST SYNTHESIS OF BENZO[e][1,3,2]DIAZAPHOSPHININO[1,6-c]-[1,3,2]OXAZAPHOSPHININES

Tarik E. Ali,a,** Mohammed A. Assiri,a,b and Ibrahim S. Yahiaec

aDepartment of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia. bResearch Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia. cDepartment of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia

*E-mail: tarik_elsayed1975@yahoo.com, tismail@kku.edu.sa

Abstract – A series of novel benzo[e][1,3,2]diazaphosphininino[1,6-c][1,3,2]-oxazaphosphinine derivatives (3a-f) were synthesized by cyclization reactions of 6-(2-hydroxyphenyl)-2-phenyl-1H-2-oxido-1,3,2-diazaphosphinine (2) with some phosphorus dichlorides in the presence of triethylamine in dry dioxane under reflux. The structures of all the synthesized compounds were established by IR, 1H-, 13C- and 31P-NMR spectra as well as by elemental analysis and mass spectral analysis.

The rich chemistry and wide applications of organophosphorus compounds are receiving attraction by the scientists belonging to different scientific disciplines.1-3 Organophosphorus compounds, which are a wide class of chemical compounds containing organic moieties usually bonded directly to phosphorus or bonded through a heteroatom, such as sulfur, oxygen or nitrogen, are one of the most common chemicals in the human environment. These phosphorus compounds have unique properties and high biological activities such as insecticidal,4 antimicrobial5 and anticancer.6 On the other hand, it is known that 1,3,2-diazaphosphinine ring containing heterocyclic compounds are very interesting biologically active molecules.7,8 Considering the above facts and our program research on the development of new biologically active heterocyclic organophosphorus compounds,9-12 we herein reported the synthesis of a novel molecular frame of benzo[e][1,3,2]diazaphosphininino[1,6-c][1,3,2]oxazaphosphinines.

6-(2-Hydroxyphenyl)-2-phenyl-1H-2-oxido-1,3,2-diazaphosphinine (2), which is the starting material for this work, was obtained from reaction of (E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one (1)13 with phenylphosphonic diamide in absolute ethanol containing a few drops of acetic acid (Scheme 1). The IR spectrum of compound 2 recorded the absorption bands for NH and OH groups at 3213 and 3342
cm$^{-1}$. Its 1H-NMR spectrum displayed the protons $H–5$ and $H–4$ of diazaphosphinine ring as two doublets at δ 5.19 and 7.49 ppm with the same coupling constant J=5.2 Hz, while the NH and OH were showed at δ 9.89 and 10.03 ppm. Furthermore, its 13C-NMR spectrum recorded the carbon atoms of diazaphosphinine ring at δ 71.8 (C–5), 151.3 (C–6) and 151.9 (C–4) ppm. Its 31P-NMR spectrum exhibited one singlet for one isomer at δ 27.4 ppm. The mass spectrum of compound 2 showed its molecular ion peak at m/e 284 (M+, 15%).

![Scheme 1](image)

The presence of two active nucleophilic sites in the starting material 2 provides alternative opportunities in the direction of the reaction with electrophilic phosphorus halides.14 Its synthetic precursor opens wide opportunities for the use of the diazaphosphinine system in the synthesis of diverse fused phosphorus heterocyclic compounds. Thus, the reaction of compound 2 with triethylamine and phenylphosphorus dichlorides (including P,P-dichlorophenylphosphine, phenylphosphonic dichloride and phenyl-phosphonothioic dichloride) (Scheme 2) as well as phosphorus chlorides (including phosphorus trichloride, phosphoryl chloride and thiophosphoryl chloride) (Scheme 3) in dry dioxane under reflux led to the formation of benzo[e][1,3,2]diazaphosphinino[1,6-c][1,3,2]oxazaphosphinines 3a-f (Schemes 2 and 3). The proposed mechanism involved nucleophilic substitution of the chlorine atom at phosphorus reagents with the OH and NH of compound 2 to form the target fused systems, and released equimolar HCl in form triethylammonium chloride. Moreover, the synthesized products 3b,e were also obtained by oxidation of compounds 3a and 3d, respectively, using hydrogen peroxide in dry tetrahydrofuran in moderate yields (Schemes 2 and 3). Similarly, the synthesized products 3c,f were obtained by sulfuration of compounds 3a and 3d, respectively, using sulfur element in dry tetrahydrofuran in low yields (Schemes 2 and 3). The structure of compounds 3a-f was deduced from their IR, NMR, MS spectra and elemental analysis. The IR spectra of compounds 3a-f exhibited absorption bands in the region of 1603–1612 (C=N) and 1211–1239 (P=O) cm$^{-1}$. The 1H-NMR spectral data of products 3a-f revealed the total absence of signals specific to the NH$_{amidic}$ and OH$_{phenolic}$ protons of compound 2 which supported the cyclization process. However, the protons $H–1$ and $H–2$ were observed as doublets in the region δ 5.43–5.71 and 7.49–7.64 ppm, respectively, with coupling constants in range 5.6–6.4 Hz.15,16 Also, the 1H-NMR spectra proved the presence of additional signals in the products 3a-c for the phenyl groups introduced by phenylphosphorus dichlorides.
Scheme 2

i) dioxane, Et$_3$N, 5 h at 70-80 °C
ii) H_2O_2, THF, 10-12 h at rt (to yield 3b in 45%)
iii) S$_8$, THF, 6-8 h at 60-70 °C (to yield 3c in 51%)

Scheme 3

i) a. dioxane, Et$_3$N, 5 h at 70-80 °C
b. dist. H$_2$O, 2 h at 40-50 °C
ii) H_2O_2, THF, 10-12 h at rt (to yield 3e in 39%)
iii) S$_8$, THF, 6-8 h at 60-70 °C (to yield 3f in 46%)
The 13C-NMR spectra of compounds 3a-c exhibited signals attributable to the additional carbon atoms of phenyl groups, besides three characteristic signals for carbon atoms of diazaphosphinine moieties at δ 73.1–77.1 (C–1), 146.8–149.8 (C–11a) and 150.3–153.3 (C–2) ppm, in compounds 3a-f. In the novel products, two new chiral centers were generated at the two phosphorus atoms, then four diastereoisomers (SrSp, RpRr, SrRr, RpSp) might be found in the products 3a-f. We failed to obtain suitable crystals to conduct X-ray crystallography to confirm these suggestions. Also, the 1H- and 13C-NMR spectra did not help to discover these diastereoisomers. The 31P-NMR spectrum was the only tool that supported the presence of one or more diastereoisomers. The 31P-NMR spectra of products 3a,b,f showed only one peak for each phosphorus atom. Moreover, the 31P-NMR spectra for products 3c,d,e displayed two peaks for each phosphorus atom with a smaller shift difference value $\delta = 0.2–0.5$ ppm. The ratio of the intensities of 3c,d,e was approximately 46:54, 45:55, 47:53 by the integration of suitable signals, respectively. These results revealed the presence of one isomer in the products 3a,b,f and merely two isomers in the products 3c,d,e. Unfortunately, owing to the close values of R_f of diastereoisomers, it appeared to be impossible to isolate them by column chromatography or recrystallization.

In summary, construction of novel fused phosphorus heterocyclic systems such as benzo[e][1,3,2]-diazaphosphinino[1,6-c][1,3,2]oxazaphosphinines were achieved via reaction of 6-(2-hydroxyphenyl)-2-phenyl-1H-2-oxido-1,3,2-diazaphosphinine with some phosphorus dichloride and trichloride in good yields.

EXPERIMENTAL

The melting points were determined in an open capillary tube on a digital Stuart SMP-3 apparatus. Infrared spectra were measured on FT-IR (Nicolet IS10) spectrophotometer using KBr disks and Perkin-Elmer 293 spectrophotometer using KBr disks. 1H- and 13C-NMR spectra were measured on Gemini-300BB spectrometer (400 and 100 MHz), using DMSO-d_6 as a solvent and TMS (δ) as an internal standard. 31P-NMR spectra were measured on a Bruker (162 MHz) spectrophotometer using DMSO-d_6 as a solvent, TMS as an internal standard and 85% H_3PO_4 as an external reference. Mass spectra were recorded on a Gas Chromatographic GCMSqp 1000 ex Shimadzu instrument at 70 ev and direct probe controller inlet part to single quadropole mass analyzer in (Thermo Scientific GCMS). Elemental microanalysis was performed on Perkin-Elmer 2400II at the Chemical War department, Ministry of Defense. The purity of the synthesized compounds was checked by thin layer chromatography (TLC) and elemental microanalysis.

Synthesis of 6-(2-hydroxyphenyl)-2-phenyl-1H-2-oxido-1,3,2-diazaphosphinine (2)

A mixture of compound 1 (1.91 g, 10 mmol) and phenylphosphonic diamide (1.56 g, 10 mmol) in absolute EtOH (50 mL) containing a few drops of glacial acetic acid, was heated under reflux for 6 h.
After cooling, the formed precipitate was filtered off and crystallized from EtOH to give the product 2 as canary yellow solid in 82% yield; mp 152−153 °C. IR (KBr), (ν max, cm⁻¹): 3342 (br, OH), 3213 (NH), 1616 (C=N), 1585 (C=C), 1218 (P=O). ¹H-NMR (400 MHz, DMSO-d₆): 5.19 (d, 1H, J=5.2 Hz, H−5), 6.75−7.33 (m, 9H, Ar−H), 7.49 (d, 1H, J=5.2 Hz, H−4), 9.89 (br, 1H, NH), 10.03 (br, 1H, OH). ¹³C-NMR (100 MHz, DMSO-d₆): 71.8 (C−5), 109.8 (C−1 phenol), 116.6 (C−2 phenol), 119.6 (C−5 phenol), 122.4 (C−6 phenol), 129.1 (C−4 phenol), 129.4 (C−3′,5′ phenyl), 133.7 (C−2′,6′ phenyl), 134.3 (d, J=117 Hz, C−1′ phenyl), 135.2 (C−4′ phenyl), 151.3 (C−6), 151.9 (C−4), 156.5 (C−2 phenol). ³¹P-NMR (162 MHz, DMSO-d₆): 27.4 ppm. MS (m/z, I%): 284 (M⁺, 15%). Anal. Calcd for C₁₅H₁₃N₂O₂P (284.26): C, 63.38%; H, 4.61%; N, 9.85%. Found: C, 63.15%; H, 4.39%; N, 9.68%.

General procedure for reaction of compound 2 with phenylphosphorus dichlorides: Synthesis of the products 3a-c.

A solution of phosphorus reagent (including each P,P-dichlorophenylphosphine, phenylphosphonic dichloride and phenylphosphonothioic dichloride) (5 mmol) in dry dioxane (5 mL) was added to a solution of compound 2 (0.71 g, 5 mmol) in dry dioxane (30 mL) in the presence of triethylamine (1.4 mL, 10 mmol) as a catalyst, under stirring for 15 min at 10 °C then heated under reflux for 5 h at 70-80 °C. The formed inorganic salt was removed. The solutions were concentrated to their half volumes and left to cool. The formed solids were filtered off, washed with water and crystallized from diluted EtOH.

4,6-Diphenyl-4-oxido-6H-benzo[e][1,3,2]diazaphosphinino[1,6-c][1,3,2]oxazaphosphinine (3a): Pale yellow solid in 74% yield; mp 188−190 °C. IR (KBr), (ν max, cm⁻¹): 1612 (C=N), 1587 (C=C), 1211 (P=O). ¹H-NMR (400 MHz, DMSO-d₆): 5.49 (d, 1H, J=6.4 Hz, H−1), 6.88−7.51 (m, 14H, Ar−H), 7.63 (d, 1H, J=6.4 Hz, H−2). ¹³C-NMR (100 MHz, DMSO-d₆): 73.8 (C−1), 110.3 (C−11a), 113.3 (C−8), 119.2 (C−10), 122.1 (C−11), 126.4 (C−2′′,6′′ phenyl), 128.1 (C−3′′,5′′ phenyl), 128.8 (C−9), 128.9 (C−3′,5′ phenyl), 129.4 (C−4′ phenyl), 133.9 (C−2′,6′ phenyl), 135.2 (d, J=118 Hz, C−1′ phenyl), 135.4 (C−4′ phenyl), 139.2 (d, J=124 Hz, C−1′′ phenyl), 149.0 (C−11b), 151.6 (C−2), 152.6 (C−7a). ³¹P-NMR (162 MHz, DMSO-d₆): 390 (M⁺, 18%). Anal. Calcd for C₂₁H₁₆N₂O₂P₂ (390.32): C, 64.62%; H, 4.13%; N, 7.18%. Found: C, 64.35%; H, 3.98%; N, 6.92%.

4,6-Dioxido-4,6-diphenylbenzo[e][1,3,2]diazaphosphinino[1,6-c][1,3,2]oxazaphosphinine (3b): Yellow solid in 77% yield; mp 198−200 °C. IR (KBr), (ν max, cm⁻¹): 1603 (C=N), 1591 (C=C), 1222, 1234 (P=O). ¹H-NMR (400 MHz, DMSO-d₆): 5.53 (d, 1H, J=6.0 Hz, H−1), 6.82−7.39 (m, 14H, Ar−H), 7.62 (d, 1H, J=6.0 Hz, H−2). ¹³C-NMR (100 MHz, DMSO-d₆): 73.1 (C−1), 110.6 (C−11a), 113.8 (C−8), 119.7 (C−10), 122.5 (C−11), 128.3 (C−3′,5′ phenyl), 128.4 (C−9), 129.2 (C−3′,5′ phenyl), 130.5 (C−2′,6′ phenyl), 132.1 (C−4′ phenyl), 133.6 (C−2′,6′ phenyl), 134.3 (d, J=116 Hz, C−1′ phenyl), 136.1 (C−4′ phenyl), 136.4 (d, J=118 Hz, C−1′′ phenyl), 148.5 (C−11b), 152.3 (C−2), 153.9 (C−7a). ³¹P-NMR (162 MHz, DMSO-d₆): 406 (M⁺, 18%). Anal. Calcd for C₂₁H₁₆N₂O₃P₂ (406.32): C, 62.08%; H,
3.97%; N, 6.89%. Found: C, 61.86%; H, 3.71%; N, 6.62%.

4,6-Diphenyl-4-oxido-6-sulfido-6λ3-benzof[1,3,2]diazaphosphinine [1,6-c][1,3,2]oxazaphosphinine (3c): Pale orange solid in 81% yield; mp 214–215 °C. IR (KBr), (ν max, cm⁻¹): 1610 (C=N), 1593 (C=C), 1231 (P=O), 732 (P=S). 1H-NMR (400 MHz, DMSO-d₆): 5.71 (d, 1H, J=5.6 Hz, H–1), 6.96–7.41 (m, 14H, Ar–H), 7.64 (d, 1H, J=5.6 Hz, H–2). 13C-NMR (100 MHz, DMSO-d₆): 75.2 (C–1), 111.3 (C–11a), 115.6 (C–8), 121.9 (C–10), 123.2 (C–11), 129.2 (C–9), 129.4 (C–3′,5′phenyl), 129.6 (C–3″,5″phenyl), 130.8 (C–2″,6″phenyl), 132.2 (C–2′,6′phenyl), 133.8 (C–4″phenyl), 134.2 (C–4′phenyl), 136.1 (d, J=120 Hz, C–1′phenyl), 138.3 (d, J=121 Hz, C–1″phenyl), 149.1 (C–11b), 154.2 (C–2), 156.2 (C–7a). 31P-NMR (162 MHz, DMSO-d₆): 31.6, 31.9 and 38.4, 38.6 ppm. MS (m/z, I%): 422 (M +, 8%). Anal. Calcd for C₂₁H₁₆N₂O₂P₂S (422.39): C, 59.72%; H, 3.82%; N, 6.63%; S, 7.59%. Found: C, 59.53%; H, 3.56%; N, 6.35%; S, 7.38%.

General procedure for reaction of compound 2 with phosphorus chlorides: Synthesis of the products 3d-f.

A solution of phosphorus reagent (including each phosphorus trichloride, phosphoryl chloride and thiophosphoryl chloride) (5 mmol) in dry dioxane (5 mL) was added to a solution of compound 2 (0.71 g, 5 mmol) in dry dioxane (30 mL) in the presence of triethylamine (1.4 mL, 10 mmol) as a catalyst, under stirring for 15 min at 10 °C then heated under reflux for 5 h at 70-80 °C. The formed inorganic salt was removed. The solutions were concentrated to their half volumes and left to cool. The obtained oily mixtures dissolved in distillated water (30 mL) and stirred at 40–50 °C for 2 h. After cooling, all the crude products were filtered off, washed with water, and crystallized from diluted MeOH.

6-Hydroxy-4-oxido-4-phenyl-6H-benzo[e][1,3,2]diazaphosphinino[1,6-c][1,3,2]oxazaphosphinine (3d): Yellow solid in 69% yield; mp 169-171 °C. IR (KBr), (ν max, cm⁻¹): 3402 (br, OH), 1605 (C=N), 1588 (C=C), 1226 (P=O). 1H-NMR (400 MHz, DMSO-d₆): 3.71 (br, 1H, OH), 5.43 (d, 1H, J=5.6 Hz, H–1), 6.81–6.94 (m, 2H, Ar–H), 7.13–7.36 (m, 7H, Ar–H), 7.53 (d, 1H, J=5.6 Hz, H–2). 13C-NMR (100 MHz, DMSO-d₆): 74.2 (C–1), 111.2 (C–11a), 113.9 (C–8), 119.5 (C–10), 122.7 (C–11), 127.9 (C–9), 128.9 (C–3″,5″phenyl), 132.6 (C–2″,6″phenyl), 133.6 (d, J=119 Hz, C–1′phenyl), 135.1 (C–4′phenyl), 147.9 (C–11b), 153.1 (C–2), 154.2 (C–7a). 31P-NMR (162 MHz, DMSO-d₆): 32.5, 32.9 and 12.6, 12.2 ppm. MS (m/z, I%): 330 (M +, 10%). Anal. Calcd for C₁₅H₁₂N₂O₃P₂ (330.22): C, 54.56%; H, 3.66%; N, 8.48%. Found: C, 54.21%; H, 3.48%; N, 8.24%.

4,6-Dioxido-6-hydroxy-4-phenylbenzo[e][1,3,2]diazaphosphinino[1,6-c][1,3,2]oxazaphosphinine (3e): Yellow solid in 71% yield; mp 192–194 °C. IR (KBr), (ν max, cm⁻¹): 3411 (br, OH), 1610 (C=N), 1591 (C=C), 1226, 1239 (P=O). 1H-NMR (400 MHz, DMSO-d₆): 4.11 (br, 1H, OH), 5.48 (d, 1H, J=5.6 Hz, H–1), 7.18–7.41 (m, 9H, Ar–H), 7.49 (d, 1H, J=5.6 Hz, H–2). 13C-NMR (100 MHz, DMSO-d₆): 75.7 (C–1), 109.8 (C–11a), 114.1 (C–8), 120.1 (C–10), 122.9 (C–11), 128.3 (C–3″,5″phenyl), 128.6 (C–9), 132.6 (C–2″,6″phenyl), 133.6 (d, J=119 Hz, C–1′phenyl), 135.1 (C–4′phenyl), 147.9 (C–11b), 153.1 (C–2), 154.2 (C–7a). 31P-NMR (162 MHz, DMSO-d₆): 32.5, 32.9 and 12.6, 12.2 ppm. MS (m/z, I%): 330 (M +, 10%). Anal. Calcd for C₁₅H₁₂N₂O₃P₂ (330.22): C, 54.56%; H, 3.66%; N, 8.48%. Found: C, 54.21%; H, 3.48%; N, 8.24%.
131.7 (C−2′,6′ phenyl), 132.6 (d, J=120 Hz, C−1′ phenyl), 133.3 (C−4′ phenyl), 146.8 (C−11b), 153.3 (C−2), 154.6 (C−7a). \(^{31}\)P-NMR (162 MHz, DMSO-\(_d\)\(_6\)): 33.1, 33.4 and 14.8, 15.1 ppm. MS (m/z, I%): 346 (M\(^+\), 18%). Anal. Calcd for C\(_{15}H_{12}N_2O_4P_2\): C, 52.02%; H, 3.49%; N, 8.09%. Found: C, 51.83%; H, 3.21%; N, 7.75%.

6-Hydroxy-4-oxido-4-phenyl-6-sulfido-6\(^{1}\)\(^{2}\)-benzo[e][1,3,2]diazaphosphinino[1,6-c][1,3,2]oxazaphosphinine (3f): Pale orange solid in 73% yield; mp 199−201 °C. IR (KBr), (v max, cm\(^{-1}\)): 3395 (br, OH), 1612 (C=N), 1589 (C=C), 1224 (P=O), 728 (P=S). \(^{1}\)H-NMR (400 MHz, DMSO-\(_d\)\(_6\)): 3.93 (br, 1H, OH), 5.63 (d, 1H, J=6.0 Hz, H−1), 6.88−7.18 (m, 2H, Ar−H), 7.22−7.37 (m, 7H, Ar−H), 7.52 (d, 1H, J=6.0 Hz, H−2). \(^{13}\)C-NMR (100 MHz, DMSO-\(_d\)\(_6\)): 77.1 (C−1), 110.2 (C−11a), 115.1 (C−8), 120.9 (C−10), 123.8 (C−11), 128.8 (C−9), 129.1 (C−3′,5′ phenyl), 132.1 (C−2′,6′ phenyl), 133.8 (C−4′ phenyl), 136.1 (d, J=119 Hz, C−1′ phenyl), 149.8 (C−11b), 150.3 (C−2), 154.1 (C−7a). \(^{31}\)P-NMR (162 MHz, DMSO-\(_d\)\(_6\)): 30.8 and 13.3 ppm. MS (m/z, I%): 362 (M\(^+\), 13%). Anal. Calcd for C\(_{15}H_{12}N_2O_3P_2S\): C, 49.73%; H, 3.34%; N, 7.73%, S, 8.85%. Found: C, 49.54%; H, 3.11%; N, 7.52%; S, 8.51%.

General procedure for oxidation of compounds 3a and 3d with hydrogen peroxide: Synthesis of the products 3b and 3e.

A solution of each compound of 3a and 3d (2 mmol) in THF (15 mL) and aqueous hydrogen peroxide (30%, 0.25 mL) was stirred for 10-12 h at room temperature. The reaction mixtures were concentrated to their half volumes, and then add Et\(_2\)O (20 mL). The isolated precipitates 3b and 3e, respectively, in 45 and 39% yields, were filtered off, dried and crystallized from the proper solvent.

General procedure for sulfuration of compounds 3a and 3d with sulfur element: Synthesis of the products 3c and 3f.

A solution of each compound of 3a and 3d (2 mmol) in THF (15 mL) and sulfur element (3 mmol) was heated under reflux for at 6-8 h room at 60-70 °C. The reaction mixtures were concentrated to their half volumes. When the reaction mixtures were cooled, they deposited pale orange solids 3c and 3f which were filtered off, washed with benzene and crystallized from the proper solvent.

ACKNOWLEDGEMENT

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P1./22/40).

REFERENCES