RUTHENIUM-CATALYZED HYDROXYETHYLATION OF CYCLIC AMINES WITH ETHYLENE GLYCOL

Yushi Nakamura, a Shuhei Tomioka, a Yohei Oe, a* and Tetsuo Ohta a

a Department of Biomedical Information, Faculty of Life and Medical Sciences, Doshisha University. b Institute for Advanced Research and Education, Doshisha University. E-mail: yoe@mail.doshisha.ac.jp

Abstract – It was found that a catalyst system RuCl₂(PPh₃)₃/Xantphos is effective to install hydroxyethyl groups to the nitrogen atom of cyclic amines. Thus, the reactions of cyclic amines with ethylene glycol were performed in the presence of the RuCl₂(PPh₃)₃/Xantphos catalyst in toluene at 120 °C for 22 h to provide the corresponding β-amino alcohols in up to 92% yield.

INTRODUCTION

Heterocyclic compounds having the N-(2-hydroxy)ethyl group and their derivatives are often found in approved drugs and drug candidates (Figure 1). These structures are generally constructed by the nucleophilic substitution of cyclic amines with 2-haloethanol.1 However, using harmful halogenated reactant with a stoichiometric amount of bases and the discharge of the stoichiometric or more waste are not preferred from the view point of green chemistry.2

Figure 1. Examples of in approved drugs including N-(hydroxyethyl)heterocycles
An alternative method for constructing these structures is the reaction of cyclic amines with flammable and carcinogenic ethylene oxide, though the reaction proceeds with perfect atom-economy. It is considered that the use of ethylene glycol instead of these reactants is safer; therefore, several researchers have attempted to synthesize the N-hydroxyethylation of cyclic amines with ethylene glycol based on the “borrowing hydrogen” strategy in which the alcohol is directly used as an alkylating reagent.

The pioneering study on the hydroxyethylation of cyclic amines by the metal-catalyzed reaction of amines with ethylene glycol is Marsella’s work reported in 1987. The author found that secondary amines were transformed to the corresponding hydroxyethylated amines in the presence of the RuCl2(PPh3)3 or RuCl3·nH2O/xPPh3 catalyst by using ethylene glycol as a solvent and that the phosphine ligand played a very important role in the selective formation of β-amino alcohols. Although the RuCl3·nH2O/11PPh3 catalyst showed extremely high β-amino alcohol selectivity (>99:0) on the reaction of morpholine with ethylene glycol, only limited amines such as morpholine and pyrrolidine were discussed. The author mentioned that this catalyst system required an induction period of a variable length from 1 to 5 h, which hindered further investigations including further scope of amine substrates and utility. Afterwards, Leonard et al. checked the catalytic activity of RuCl2(PPh3)3 on the reaction of 1-methylpiperezine with ethylene glycol in their research on the synthetic process of their potent SRC kinase inhibitor AZ-1 in 2015. Their key intermediate, 1-hydroxyethyl-4-methylpiperazine, was obtained selectively similar to Marsella’s conditions, but they conclude this method was not suitable for their process due to the accompanying formation of the undesired diamine. An iridium pincer catalyst has been reported by Börner, where the reaction proceeded with almost perfect selectivity but the use of excess amine was required; nevertheless, ethylene glycol is usually less expensive than amine substrates. A heterogeneous catalyst using Pd/C and an excess amount of ZnO has been developed, but only the hydroxyethylation of tetrahydroquinoline was examined, and only 50% yield of amino alcohol product was obtained because of the formation of undesired tricyclic by-product. Over the course of studies on our ruthenium-catalyzed borrowing hydrogen reactions using ethylene glycol for the construction of amino alcohols and cyclic compounds, we found that the RuCl3(PPh3)3/Xantphos catalyst is effective for the representative and highly selective formation of β-amino alcohols by the reaction of cyclic amines and ethylene glycol. We report here the Ru-catalyzed hydroxyethylation of cyclic amines and survey the reaction pathways based on the several experiments.

RESULTS AND DISCUSSION

The reaction conditions were initially optimized using 1-phenylpiperazine (1a) and ethylene glycol (2) as the test substrates, and the results are summarized in Table 1. When the reaction was performed with [RuCl2(p-cymene)]2 as a catalyst in the presence of 5 mol% of KOBu at 120 °C, the desired amino
alcohol 3a was obtained in 20% yield accompanied with the formation of diamine 4a in 80% yield (entry 1). The reaction by using RuCl2(PPh3)3 as a catalyst gave 3a in 25% yield accompanied with 4a in 30% yield, apparently lower selectivity than the reported results5-6 (entry 2). This difference in the results may be due to the difference in the amounts of ethylene glycol and by using solvent. Ruthenium complexes with the Cp* ring were not effective for the present reaction (entries 3 and 4). Next, effects of ligands were investigated using various diphosphine ligands having a wide range of bite angles11 and [RuCl2(p-cymene)]2, which showed the highest conversion among the ruthenium complexes we tested. When 1,1-bis(diphenylphosphino)methane (Dppm) having the smallest bite angle (73º) was used as a ligand, the desired 3a was obtained in spite of low conversion (entry 5). We assumed that Dppm worked as a monodentate ligand12 and lowered the catalytic efficiency. The catalyst with 1,2-bis(diphenylphosphino)benzene (DppBenzene), which is a promising bidentate ligand, afforded 3a in 14% yield and high conversion (84% conversion, entry 6). Chemical yields of 3a were improved as bite angle of the ligands were widened (entries 7-14), and 3a was selectively formed in 65% yield when 2,2'-bis(diphenylphosphino)diphenyl ether (DPEphos) having wide bite angle (104º) was used (entry 11). 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) having a rigid back bone and the widest bite angle (108º) among the ligands we tested showed lower selectivity than DPEphos to give 3a in 43% yield (entry 12). We hypothesized that the rigidity of xanthene backbone and the bulkiness slowed the coordination to the ruthenium center and the reaction proceeded under ligand-free conditions at the early stage of the reaction. Therefore, xantphos was treated with [RuCl2(p-cymene)]2 and KOBu in toluene for 30 min before the reaction, then the reaction was performed in the resulting solution. As a result, 3a was obtained in 82% yield with quantitative conversion (entry 13). Since it is known that the complexation of Xantphos and RuCl2(PPh3)3 proceeds nicely to afford the Xantphos-Ru complex,13 we tested the combination catalyst of Xantphos and RuCl2(PPh3)3. We finally found that this catalysis afforded 3a in almost quantitative yield (entry 14). Almost no reaction took place when DPEphos was used instead of Xantphos under the reaction conditions in entry 14, presumably due to the insolubility of the catalytically active species generated by the treatment of RuCl2(PPh3)3 with DPEphos and KOBu' (entry 15).

The reactions of various cyclic amines 1a-p with ethylene glycol (2) were investigated under the optimized reaction conditions, and the results are summarized in Table 2. The N-hydroxyethylation of six-membered aliphatic cyclic amines, such as piperazine 1a, piperidine (1b), and morpholine (1c) proceeded effectively to afford the corresponding amino alcohols 3a-c in 92, 83, and 86% isolated yields, respectively. Thiomorpholine (1d) was successfully reacted with 2 under the optimized reaction conditions to afford the hydroxyethylation product 3d in 80% isolated yield, suggesting that sulfide moiety can be tolerated to the present catalytic reaction. The cyclic acetal protecting groups can be tolerated; thus, the reaction of cyclic amine bearing dioxolane moiety 3e with 2 afforded the amino
alcohol 3e in 88% yield. Fused cyclic amine, decahydroquinoline (1f) also gave the corresponding amino alcohol 3f in 91% yield. The present hydroxyethylation of azepane (1g) also provided 3g in 65% isolated yield. On the other hand, five-membered cyclic amines required the modification of the reaction conditions. Thus, the reaction of pyrrolidine (1h) with 2 under the above optimized condition afforded a 35% yield of 3h, where undesired diamine 4d was frequently detected. To avoid the diamine formation, the reaction was performed under lower concentration to improve the reaction efficiency to afford 3h in

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru catalyst</th>
<th>Ligand (bite angle)</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3a</td>
</tr>
<tr>
<td>1</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub></td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Cp*RuCl(PPh<sub>3</sub>)<sub>2</sub></td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Cp*RuCl(PPh<sub>3</sub>)</td>
<td>-</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>Dppm<sup>c</sup> (73)</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>DppBenzene<sup>d</sup> (83)</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>Dppe<sup>e</sup> (86)</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>Dppb<sup>f</sup> (94)</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>(R)-BINAP<sup>g</sup> (93)</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>Dppf<sup>h</sup> (99)</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>DPEphos<sup>i</sup> (104)</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>Xantphos (108)</td>
<td>43</td>
</tr>
<tr>
<td>13<sup>k</sup></td>
<td>[RuCl<sub>2</sub>(p-cymene)]<sub>2</sub></td>
<td>Xantphos (108)</td>
<td>82</td>
</tr>
<tr>
<td>14<sup>k</sup></td>
<td>RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub></td>
<td>Xantphos (108)</td>
<td>>99 (92)</td>
</tr>
<tr>
<td>15<sup>k</sup></td>
<td>RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub></td>
<td>DPEphos<sup>h</sup> (104)</td>
<td>trace</td>
</tr>
</tbody>
</table>

^aReaction conditions: Ru catalyst (0.05 mmol Ru), ligand (0.06 mmol), KOBu^t (0.05 mmol), 1-phenylpiperazine (1a) (1 mmol), ethylene glycol (3 mmol), and toluene (1 mL) at 120 °C for 22 h. ^bYields were determined by ¹H NMR. Isolated yield is in parentheses. ^c1,1-Bis(diphenylphosphino)methane. ^d1,2-Bis(diphenylphosphino)benzene. 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene. ^g4,5-Bis(diphenylphosphino)ditolyl ether. ^h4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene. ⁱRu complexes were preliminary treated with ligand and KOBu^t in toluene at room temperature for 30 min.
82% NMR yield, though the isolated yield was not good due to the difficulty in its isolation (57% isolated yield). L-Proline \(t \)-butyl ester (1i) obtained a moderate yield of amino alcohol 3i, but the chemical yield improved by lowering the concentration and increasing the catalyst loadings to afford 3i in 72% isolated yield. In this case, partial racemization unfortunately occurred to give 3i with 54% ee. Low yield (11% isolated yield) of amino alcohol 3j was obtained when indoline (1j) was used as a cyclic amine substrate, which was not due to the formation of undesired diamine by-product but to the formation of several by-products having indole frameworks. The transformation into the undesired indole ring systems was suppressed by using 2-methylindoline (1k) to afford excellent yield (91%) of the amino alcohol 3k. A complex mixture was obtained when isoindoline (1l) was used as a substrate presumably due to the reason similar to the case of indoline. On the other hand, tetrahydroquinolines and isoquinolines 1m-p were reacted with 2 under the standard reaction conditions to provide the corresponding amino alcohols in 62-87% yields. Successful result in 3n suggested the bromoarene moiety, which could be used as a substrate for the various cross coupling reactions, was tolerated to the present hydroxyethylation. A successful example of a non-cyclic amine substrate was shown in Scheme 1. Thus, dibenzylamine (1q) was treated with 2 under the optimized reaction conditions to afford 2-dibenzylaminoethanol (3q) in 96% NMR yield (91% isolated yield), where the undesired diamine 4q was not detected.

![Scheme 1. Hydroxyethylation of dibenzylamine (1q)](image)

The plausible reaction mechanism is illustrated in Scheme 2. The reaction started from the dehydrogenation of ethylene glycol to give the hydroxy aldehyde intermediate I, which was reacted with cyclic amine to afford the corresponding iminium ion intermediate II. Hydrogenation of this intermediate II led to forming the desired amino alcohol 3. Another pathway is deprotonation of intermediate II, affording the enamine form III and its tautomer IV. Intermediate III or IV would also be hydrogenated by the Ru-H species to give 3. On the other hand, the nucleophilic attack of the next amine onto intermediate III or IV afford the corresponding tautomeric intermediates V and VI, which were subjected to hydrogenation with Ru-H species to afford diamine 4. It is considered that an alternative pathway to 4 is the dehydrogenation of 3, followed by the reaction with the next amine then the hydrogenation of resulting intermediate V or VI.
Table 2. Scope of cyclic amines for Ru-catalyzed hydroxyethylation with ethylene glycol

<table>
<thead>
<tr>
<th>Cyclic amines 1a-p</th>
<th>2 (3 eq.)</th>
<th>RuCl₂(PPh₃)₃ (5 mol%Ru)</th>
<th>Xantphos (6 mol%)</th>
<th>KOBu’ (5 mol%)</th>
<th>toluene, 120 °C, 22 h</th>
<th>Yields were determined by ¹H NMR using internal standard method. The value in parentheses is isolated yield.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3a</td>
<td>>99% (92%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3b</td>
<td>98% (83%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3c</td>
<td>95% (86%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3d</td>
<td>87% (80%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(CH₂)₃N(CH₂OH)</td>
<td>3e</td>
<td>>99% (88%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH(CH₂O)₂N(CH₂OH)</td>
<td>3f</td>
<td>94% (91%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH(CH₂O)₂N(CH₂OH)</td>
<td>3g</td>
<td>78% (65%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH(CH₂O)₂N(CH₂OH)</td>
<td>3h</td>
<td>1.35%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. 82% (57%)</td>
</tr>
<tr>
<td>(OBU)₂N(CH₂OH)</td>
<td>3i</td>
<td>1.47%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. 92% (72%), 54% ee</td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3j</td>
<td>25% (11%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3k</td>
<td>96% (91%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3l</td>
<td>N.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3m</td>
<td>80% (62%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3n</td>
<td>95% (66%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3o</td>
<td>90% (87%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph. N(CH₂OH)₂N</td>
<td>3p</td>
<td>80% (63%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aReaction conditions: RuCl₂(PPh₃)₃ (0.05 mmolRu), Xantphos (0.06 mmol), KOBu’ (0.05 mmol), cyclic amine (1 mmol), ethylene glycol (3 mmol) and toluene (1 mL), at 120 °C for 22 h. Ru complexes were preliminary treated with ligand and KOBu’ in toluene at room temperature for 30 min. ^bYields were determined by ¹H NMR using internal standard method. The value in parentheses is isolated yield. ^ctrans-1f as a substrate was used. ^dToluene (5 mL) was used. ^eCatalyst (10 mol%) and toluene (5 mL) were used. The enantiomeric excess was determined by HPLC with Daicel Chiralpak AD-H.
Scheme 2. Plausible reaction pathways

To confirm these reaction pathways, several reactions were performed (Table 3). Reaction of amino alcohol 3a with amine 1a was performed in toluene at 120 °C for 5 h in the presence of [RuCl₂(p-cymene)]₂ catalyst (entry 1), and it was found that 3a was recovered in 91%, and only 2% of 4a was obtained. Apparent increase in the chemical yield of 4a was observed when ethylene glycol (2) was added to the reaction conditions, and 4a was afforded in 16% yield in spite of the almost quantitative recovery of 3a (entry 2). It seemed that the direct formation of 4a would be faster than the indirect formation through 3a. However, the amino alcohol 3a was obtained in moderate yield (8%) when the reaction was performed without using 3a, meaning that the indirect formation of 4a through 3a would be possible with the [RuCl₂(PPh₃)]₂ catalyst. Therefore, the [RuCl₂(p-cymene)]₂ catalyst afforded diamine 4a selectively. Next, reactions of 3a with 1a using the RuCl₂(PPh₃)₃/Xantphos catalyst were performed with or without ethylene glycol (2) (entries 4 and 5). Almost no reaction took place when 3a was treated with 1a in the absence of ethylene glycol (entry 4). On the other hand, treatment of 3a with 1a in the presence of 2 afforded 4a in 108% yield (entry 5). In this case, no 4a was obtained. These results revealed that indirect formation of 4a through 3a did not occur with the RuCl₂(PPh₃)₃/Xantphos catalyst in contrast to the case with the [(p-cymene)RuCl₂]₂ catalyst. The selective formation of 3a was achieved by the faster hydrogenation of the corresponding iminium ion II, enamine III, or β-amino aldehyde IV intermediates than the nucleophilic attack of the next amine substrate to these intermediate. Therefore,
pyrrolidine derivatives having higher nucleophilicity than the six-membered cyclic amines led to the
difficulty in adjusting the reaction conditions to obtain good selectivity. In conclusion, we developed the RuCl₂(PPh₃)₃/Xantphos catalyst system for the selective formation of N-(hydroxyethyl)heterocycles from cyclic amines with ethylene glycol and discussed the scope and limitation of the present reaction.

Table 3. Treatment of amino alcohol 3a under catalytic conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>2 (x mmol)</th>
<th>Ru cat.</th>
<th>amount (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1a</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>[(p-cymene)RuCl₂]₂</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>[(p-cymene)RuCl₂]₂</td>
<td>0.73</td>
</tr>
<tr>
<td>3c</td>
<td>1.0</td>
<td>[(p-cymene)RuCl₂]₂</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>RuCl₂(PPh₃)₃/Xantphos</td>
<td>>0.99</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>RuCl₂(PPh₃)₃/Xantphos</td>
<td>0.88</td>
</tr>
</tbody>
</table>

*Reaction conditions: 1a (1 mmol), 3a (1 mmol), and 2 (x mmol) were treated with Ru catalyst (0.05 mmol Ru) and KOBu’ (0.05 mmol) in toluene at 120 °C for 5 h. *Determined by ¹H NMR. *No amino alcohol 3a was added.

EXPERIMENTAL

General information

NMR spectra were recorded with Bruker Ascend 400 spectrometer (400 MHz) spectrometers by using TMS (δ = 0 ppm) as an internal standard for ¹H NMR and CDCl₃ (δ = 77 ppm) for ¹³C NMR spectroscopy. High-resolution mass spectra (FAB) were recorded using a JEOL JMS-700 instrument with meta-nitrobenzyl alcohol and glycerol as the matrix and PEG-200 as the calibration standard. Chiral HPLC analysis was performed on a Shimadzu LC-20AD with Daicel Chiralpak AD-H at 40 °C. Melting points were measured by use of Yanako. Unless noted otherwise, all reagents and solvents were purchased from commercial suppliers. Reagents obtained from commercial sources were used without
puriﬁcation. The [RuCl₂(p-cymene)]₂,¹⁵ RuCl₂(PPh₃)₃,¹⁶ CpRuCl(PPh₃)₂¹⁷ and Cp*RuCl₂(PPh₃)¹⁸ were synthesized according to literature protocols.

General procedure for hydroxyethylation

To an argon-purged reaction tube equipped with J-Young stop valve was added RuCl₂(PPh₃)₃ (0.05 mmol), Xantphos (0.06 mmol), KOBu' (0.05 mmol), and anhydrous toluene (1 mL). The mixture was stirred at rt for 30 min. Cyclic amine (1 mmol) and ethylene glycol (2) (3 mmol) were added to the reaction mixture. The mixture was degassed using FPT cycles then purged with argon again. The reaction mixture was stirred at 120 °C for 22 h. After the reaction, the yield was determined by ¹H NMR using an internal standard.

2-(4-Phenylpiperazin-1-yl)ethan-1-ol (3a)

3a was obtained as a white solid by puriﬁcation (Silica gel column chromatography, CHCl₃ → CHCl₃:MeOH = 20:3) after the catalytic reaction. Mp 82-85 °C. ¹H NMR (CDCl₃): δ = 2.61 (t, J = 5.2 Hz, 2H, -CH₂CH₂OH), 2.68 (t, J = 4.8 Hz, 4H, -CH₂NCH₂-), 3.21 (t, J = 5.2 Hz, 4H, -CH₂NPh), 3.66 (t, J = 5.2 Hz, 2H, -CH₂OH), 6.86 (t, J = 6.4 Hz, 1H, Ar-H), 6.94 (d, J = 8.0 Hz, 2H, Ar-H), 7.24-7.30 (m, 2H, Ar-H) ppm. ¹³C NMR (CDCl₃): δ = 49.3, 52.9, 57.8, 59.3, 116.1, 119.8, 129.1, 151.2 ppm. HRMS: Calcd. for C₁₂H₁₉ON₂ ([M+H]+) 207.1497; found 207.1503.

1,2-Bis(4-phenylpiperazin-1-yl)ethane (4a)

4a was obtained as a white solid by puriﬁcation (Silica gel column chromatography, CHCl₃) after the catalytic reaction. Mp 176-180 °C. ¹H NMR (CDCl₃): δ = 2.63 (s, 4H, -NCH₂CH₂NCH₂-), 2.68 (t, J = 4.8 Hz, 8H, -NCH₂CH₂NPh), 3.21 (t, J = 5.2 Hz, 8H, -CH₂NPh), 6.86 (t, J = 6.4 Hz, 2H, Ar-H), 6.93 (d, J = 8.0 Hz, 4H, Ar-H), 7.23-7.29 (m, 4H, Ar-H) ppm. ¹³C NMR (CDCl₃): δ = 49.2, 53.8, 56.0, 116.1, 119.7, 129.1, 151.3 ppm. HRMS: Calcd. for C₂₂H₃₁N₄ ([M+H]+) 351.2548; found 351.2541.

2-(Piperidin-1-yl)ethan-1-ol (3b)

3b was obtained as a colorless oil by puriﬁcation (Silica gel column chromatography, EtOAc → EtOAc:MeOH = 20:3) after the catalytic reaction. ¹H NMR (CDCl₃): δ = 1.39-1.50 (br-m, 2H, -CH₂CH₂CH₂N-), 1.58 (quin, J = 5.6 Hz, 4H, -CH₂CH₂CH₂N-), 2.43 (br-s, 4H, -CH₂CH₂CH₂N-), 2.48 (t, J = 5.6 Hz, 2H, -CH₂CH₂OH), 3.59 (t, J = 5.6 Hz, 2H, -CH₂OH) ppm. ¹³C NMR (CDCl₃): δ = 24.3, 26.0, 54.4, 57.8, 60.0 ppm. HRMS: Calcd. for C₇H₁₆ON ([M+H]+) 130.1232; found 130.1234.
2-(Morpholin-1-yl)ethan-1-ol (3c)

3c was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl₃:MeOH = 20:3) after the catalytic reaction. ¹H NMR (CDCl₃): δ = 2.51 (t, J = 4.4 Hz, 4H, -CH₂NCH₂CH₂OH), 2.55 (t, J = 5.2 Hz, 2H, -CH₂CH₂OH), 3.63 (t, J = 5.2 Hz, 2H, -CH₂OH), 3.73 (t, J = 4.8 Hz, 4H, -CH₂O-) ppm. ¹³C NMR (CDCl₃): δ = 53.3, 57.5, 59.8, 67.0 ppm. HRMS: Calcd. for C₆H₁₄O₂N ([M+H]+) 132.1024; found 132.1024.

2-(Thiomorpholin-1-yl)ethan-1-ol (3d)

3d was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl₃:MeOH = 20:1) after the catalytic reaction. ¹H NMR (CDCl₃): δ = 2.56 (t, J = 5.2 Hz, 2H, -CH₂CH₂OH), 2.62 (br-s, 1H, -OH), 2.68 (t, J = 4.0 Hz, 4H, -CH₂NCH₂CH₂OH), 2.78 (t, J = 5.2 Hz, 4H, -CH₂S-), 3.59 (t, J = 5.2 Hz, 2H, -CH₂OH) ppm. ¹³C NMR (CDCl₃): δ = 28.1, 54.9, 57.5, 59.9 ppm. HRMS: Calcd. for C₆H₁₄NOS ([M+H]+) 148.0796; found 148.0799.

2-(1,4-Dioxa-8-azaspiro[4.5]decan-8-yl)ethan-1-ol (3e)

3e was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl₃:MeOH = 10:1) after the catalytic reaction. ¹H NMR (CDCl₃): δ = 1.75 (t, J = 5.6 Hz, 2H, -CCH₂CH₂N-), 2.56 (t, J = 5.2 Hz, 2H, -CH₂CH₂OH), 2.59 (br-t, J = 4.8 Hz, 4H, -CCH₂CH₂N-), 3.59 (t, J = 5.2 Hz, 2H, -CH₂OH), 3.96 (s, 4H, -OCH₂CH₂O-) ppm. ¹³C NMR (CDCl₃): δ = 34.9, 51.1, 57.9, 58.7, 64.3, 107.1 ppm. HRMS: Calcd. for C₉H₁₈NO₃ ([M+H]+) 188.1286; found 188.1282.

trans-2-(Octahydroquinolin-1(2H)-yl)ethan-1-ol (3f)

3f was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl₃:MeOH = 20:3→CHCl₃:MeOH = 10:3) after the catalytic reaction. ¹H NMR (CDCl₃): δ = 0.94-1.10 (m, 3H), 1.14-1.33 (m, 3H), 1.52-1.67 (m, 5H), 1.75-1.87 (m, 2H), 2.03-2.23 (m, 3H, -CHNCH₂CH₂CH₂-), 2.97-3.13 (m, 2H, -CH₂CH₂OH), 3.46-3.53 (m, 1H, -CHHOH), 3.58-3.66 (m, 1H, -CHHOH) ppm. ¹³C NMR (CDCl₃): δ = 25.6, 25.7, 25.9, 30.8, 32.5, 33.2, 42.2, 53.0, 54.1, 58.6, 67.1 ppm. HRMS: Calcd. for C₁₁H₂₂ON ([M+H]+) 184.1701; found 184.1696.

2-(Azepan-1-yl)ethan-1-ol (3g)

3g was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl₃:MeOH = 20:7) after the catalytic reaction. ¹H NMR (CDCl₃): δ = 1.54-1.70 (br-m, 9H, -CH₂CH₂CH₂N-, -OH), 2.62-2.71 (m, 6H, -CH₂NCH₂CH₂OH), 3.53 (t, J = 5.6 Hz, 2H, -CH₂OH) ppm.
13C NMR (CDCl$_3$): $\delta =$ 26.9, 28.6, 55.3, 58.3, 58.9 ppm. HRMS: Calcd. for C$_8$H$_{18}$ON ([M+H]$^+$) 144.1388; found 144.1391.

2-(Pyrrolidin-1-yl)ethan-1-ol (3h)

3h was obtained as a colorless oil by purification (Silica gel column chromatography, EtOAc→EtOAc:MeOH = 20:3) after the catalytic reaction. 1H NMR (CDCl$_3$): $\delta =$ 1.78 (quin, $J =$ 3.6 Hz, 4H, -CH$_2$CH$_2$CH$_2$N-), 2.54-2.59 (m, 4H, -CH$_2$CH$_2$CH$_2$N-), 2.66 (t, $J =$ 5.6 Hz, 2H, -CH$_2$CH$_2$OH), 3.64 (t, $J =$ 5.6 Hz, 2H, -CH$_2$OH) ppm. 13C NMR (CDCl$_3$): $\delta =$ 23.5, 53.8, 57.6, 59.9 ppm. HRMS: Calcd. for C$_6$H$_{14}$NO ([M+H]$^+$) 116.1075; found 116.1075.

1-(2-Hydroxyethyl)pyrrolidine-2-carboxylic acid tert-butyl ester (3i)

3i was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl$_3$:MeOH = 20:3) after the catalytic reaction (54% ee). 1H NMR (CDCl$_3$): $\delta =$ 1.47 (s, 9H, tert-butyl), 1.74-1.95 (m, 3H, -C$_3$H$_7$CH-, -C$_3$H$_7$CH2-), 2.07-2.19 (m, 1H, -CHCH-), 2.41-2.49 (m, 1H, -CHHNCH$_2$CH$_2$OH), 2.73-2.78 (m, 2H, -CH/NC/CH$_2$OH), 3.14 (dd, $J =$ 9.2 Hz, $J =$ 5.2 Hz, 1H, -CH/CH$_2$OH), 3.17-3.23 (m, 1H, -CH/NN-), 3.46-3.54 (m, 1H, -CHHOH), 3.57-3.64 (m, 1H, -CHHOH) ppm. 13C NMR (CDCl$_3$): $\delta =$ 23.7, 28.0, 29.9, 53.9, 56.8, 59.8, 66.2, 81.1, 174.4 ppm. HRMS: Calcd. for C$_{11}$H$_{22}$NO$_3$ ([M+H]$^+$) 216.1599; found 216.1597. HPLC (Daicel chiralpak AD-H, UV: 222 nm, Flow rate: 1.0 mL/min, hexane/ethanol = 90/10 + 0.1%TFA): t_R1 = 3.55 min (major), t_R2 = 4.55 min (minor).

2-(Indolin-1-yl)ethan-1-ol (3j)

3j was obtained as a colorless oil by purification (Silica gel column chromatography, EtOAc:Hexane = 1:1) after the catalytic reaction. 1H NMR (CDCl$_3$): $\delta =$ 2.07 (t, $J =$ 5.6 Hz, 1H, -OH), 2.99 (t, $J =$ 8.4 Hz, 2H, -C/H/CH$_2$N-), 3.25 (t, $J =$ 5.2 Hz, 2H, -C/H/CH$_2$N-), 3.39 (t, $J =$ 8.4 Hz, 2H, -CH/CH$_2$OH), 3.81 (t, $J =$ 5.2 Hz, 2H, -CH/CH$_2$OH), 6.57 (d, $J =$ 8.0 Hz, 1H, Ar-H), 6.71 (t, $J =$ 7.2 Hz, 1H, Ar-H), 7.05-7.13 (m, 2H, Ar-H) ppm. 13C NMR (CDCl$_3$): $\delta =$ 28.7, 52.6, 54.0, 60.2, 107.4, 118.4, 124.6, 127.4, 130.1, 152.8 ppm. HRMS: Calcd. for C$_{10}$H$_{13}$NO ([M+H]$^+$) 163.0997; found 163.0996.

2-(2-Methylindolin-1-yl)ethan-1-ol (3k)

3k was obtained as a pale yellow oil by purification (Silica gel column chromatography, CHCl$_3$:MeOH = 20:1) after the catalytic reaction. 1H NMR (CDCl$_3$): $\delta =$ 1.32 (d, $J =$ 6.0 Hz, 3H, -Me), 2.00 (t, $J =$ 6.0 Hz, 1H, -CHCH$_3$), 2.62 (dd, $J =$ 15.6 Hz, $J =$ 9.6 Hz, 1H, -CH/H/CH$_2$), 3.09-3.21 (m, 2H, -CHH/CH$_3$, -CHHN-), 3.27-3.36 (m, 1H, -CH/HN-), 3.60-3.86 (m, 2H, -CH$_2$OH), 6.51 (d, $J =$ 7.6 Hz,
1H, Ar-H), 6.68 (t, J = 7.6 Hz, 1H, Ar-H), 7.02-7.09 (m, 2H, Ar-H) ppm. 13C NMR (CDCl3): δ = 19.9, 37.4, 50.7, 61.1, 61.9, 106.8, 118.1, 124.2, 127.4, 129.0, 152.9 ppm. HRMS: Calcd. for C11H15ON (M+) 177.1154; found 177.1154.

2-(3,4-Dihydroquinolin-1(2H)-yl)ethan-1-ol (3m)

3m was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl3→CHCl3:MeOH = 20:1) after the catalytic reaction. 1H NMR (CDCl3): δ = 1.71 (t, J = 6.0 Hz, 1H, -OH), 1.96 (quin, J = 6.0 Hz, 2H, -CH2CH2CH2N-), 2.78 (t, J = 6.4 Hz, 2H, -CH2CH2CH2N-), 3.32 (t, J = 5.6 Hz, 2H, -CH2CH2CH2N-), 3.44 (t, J = 5.6 Hz, 2H, -CH2CH2OH), 3.82 (qurt, J = 5.6 Hz, 2H, -CH2OH), 6.61 (t, J = 7.2 Hz, 1H, Ar-H), 6.68 (d, J = 8.0 Hz, 1H, Ar-H), 6.96 (d, J = 7.2 Hz, 1H, Ar-H), 7.05 (t, J = 8.0 Hz, 1H, Ar-H) ppm. 13C NMR (CDCl3): δ = 22.2, 28.1, 50.4, 54.2, 59.9, 111.4, 116.4, 122.9, 127.1, 129.4, 145.9 ppm. HRMS: Calcd. for C11H15NO (M+) 177.1150; found 177.1150.

2-(6-Bromo-3,4-dihydroquinolin-1(2H)-yl)ethan-1-ol (3n)

3n was obtained as a white solid by purification (Silica gel column chromatography, EtOAc:Hexane=1:2) after the catalytic reaction. Mp 67-68 °C. 1H NMR (CDCl3): δ = 1.67 (t, J = 5.6 Hz, 1H, -OH), 1.94 (quin, J = 6.0 Hz, 2H, -CH2CH2CH2N-), 2.74 (t, J = 6.4 Hz, 2H, -CH2CH2CH2N-), 3.31 (t, J = 5.6 Hz, 2H, -CH2CH2CH2N-), 3.41 (t, J = 5.6 Hz, 2H, -CH2OH), 6.53 (d, J = 8.8 Hz, 2H, Ar-H), 7.04-7.06 (br-m, 1H, Ar-H), 7.10 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H, Ar-H) ppm. 13C NMR (CDCl3): δ = 21.9, 27.9, 50.2, 54.1, 59.8, 107.9, 112.8, 124.9, 129.6, 131.6, 144.8 ppm. HRMS: Calcd. for C11H14NOBr (M+) 255.0259; found 255.0266.

2-(3,4-Dihydroisoquinolin-2(1H)-yl)ethan-1-ol (3o)

3o was obtained as a colorless oil by purification (Silica gel column chromatography, CHCl3:MeOH = 20:3) after the catalytic reaction. 1H NMR (CDCl3): δ = 2.70 (t, J = 5.2 Hz, 2H, -CH2CH2OH), 2.79 (t, J = 6.0 Hz, 2H, -CH2CH2N-), 2.89 (t, J = 5.6 Hz, 2H, -CH2CH2N-), 3.64 (s, 2H, -CH2N-), 3.69 (t, J = 5.6Hz, -CH2OH), 3.78 (s, 3H, -OMe), 6.65 (d, J = 2.4 Hz, 1H, Ar-H), 6.71 (dd, J = 8.4 Hz, J = 2.8 Hz, 1H, Ar-H), 6.94 (d, J = 8.4 Hz, 1H, Ar-H) ppm. 13C NMR (CDCl3): δ = 29.1 50.7, 55.8, 58.1, 59.2, 125.7, 126.3, 126.6, 128.7, 134.2, 134.5 ppm. HRMS: Calcd. for C11H16ON ([M+H]+) 178.1232; found 178.1233.
2-(6-Methoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-ol (3p)

3p was obtained as a colorless oil by purification (Silica gel column chromatography, EtOAc:MeOH = 20:3) after the catalytic reaction. 1H NMR (CDCl$_3$): $\delta = 2.70$ (t, $J = 5.2$ Hz, 2H, -CH$_2$OH), 2.80 (t, $J = 6.0$ Hz, 2H, -CH$_2$CH$_2$N-), 2.91 (t, $J = 5.6$ Hz, 2H, -CH$_2$CH$_2$N-), 3.67-3.72 (m, 4H, -CH$_2$N), 6.99-7.04 (m, 1H, Ar-H), 7.08-7.17 (m, 3H, Ar-H) ppm. 13C NMR (CDCl$_3$): $\delta = 29.4$, 50.6, 55.2, 55.3, 58.0, 59.1, 112.2, 113.3, 126.7, 127.5, 135.4, 158.1 ppm. HRMS: Calcd. for C$_{12}$H$_{18}$NO$_2$ ([M+H]$^+$) 208.1337; found 208.1333.

2-Dibenzylaminoethanol (3q)19

3q was obtained as a light yellow oil by purification (Silica gel column chromatography, EtOAc:Hexane = 1:4) after the catalytic reaction. 1H NMR (CDCl$_3$): $\delta = 2.55$ (br-s, 1H, -OH), 2.66 (t, $J = 5.2$ Hz, 2H, -CH$_2$OH), 3.58 (t, $J = 5.2$ Hz, 2H, -CH$_2$OH), 3.62 (s, 4H, -NCH$_2$Ph), 7.22-7.36 (m, 5H, Ar-H) ppm. 13C NMR (CDCl$_3$): $\delta = 54.8$, 58.2, 58.5, 127.2, 128.4, 128.9, 138.7 ppm. FAB-MS: ([M+H]$^+$) 242.1. CAS Registry No. 101-06-4.

ACKNOWLEDGEMENTS

This work was partially supported by JSPS KAKENHI Grant Number JP17K05870.

REFERENCES

